

A new non-hydrostatic coastal model for simulating waves at the Baltic coast

Hans Bihs Professor Department of Civil and Environmental Engineering NTNU Trondheim

hans.bihs@ntnu.no www.reef3d.com

REEF3D : Open-Source Hydrodynamics

 Developed at the Department of Civil and Environmental Engineering, NTNU Trondheim

Multiscale Framework:

- high-order discretization (FDM)
- mesh with immersed boundary
- high-performance solvers
- consistent parallelization (MPI)

Multiphysics for Hydraulic, Coastal, Offshore:

- sediment transport
- floating bodies
- porous structures
- vegetation
- stratified flow
- Published under GNU GPL v3

www.reef3d.com

CFD Two-Phase Navier-Stokes Equations

NHFLOW Non-hydrostatic Navier-Stokes Equations

FNPF Fully Nonlinear Potential Flow

SFLOW Nonhydrostatic SWE ₂

REEF3D::CFD - Hires Flow and Multiphysics

Sediment Transport Local Scour Arctic Erosion

Porous Structures

Floating Structures 6DOF Mooring

Vegetation

Debris Flow Granular Flow

Stratified Flow

Typical North Sea and Baltic Sea Coasts

North Sea Föhr, Nordfriesland

Balitc Sea Gulf of Finland

Typical Norwegian Coast

FNPF: Bjørnafjord (35km x 45km)

Coastal Model: Required Processes

- sediment • waves
- currents

- porous structures

Why NHFLOW?

	Dispersion	Wetting & Drying	Viscous effects	Breaking wave	2D/3D	Comp. cost
SFLOW	kd<1	dynamic	yes	kinematics	2D	cheap
FNPF	unlimited	static	no	kinematics	3D	cheap
NHFLOW	unlimited	dynamic	yes	kinematics	2D + 3D	cheap
CFD	unlimited	dynamic	yes	fully resolved	3D	expensive

NHFLOW - Governing Equations

$$\frac{\partial u_i}{\partial x_i} = 0$$

$$\frac{\partial hu_i}{\partial t} + u_j \frac{\partial hu_i}{\partial x_j} = -\frac{h}{\rho} \frac{\partial p}{\partial x_i} - hg_i$$

continuity

$$\frac{\partial h}{\partial t} + \frac{\partial h u_i}{\partial x_i} = 0$$
 free surface

NHFLOW - Numerical implementation

$$\frac{\partial \mathbf{U}}{\partial t} = \frac{\partial \mathbf{F}(\mathbf{U})}{\partial x} + \frac{\partial \mathbf{G}(\mathbf{U})}{\partial x} + \frac{\partial \mathbf{H}(\mathbf{U})}{\partial x} = \mathbf{S}$$
$$\mathbf{F} = \begin{bmatrix} hu\\ hu^{2} + \frac{1}{2}g\eta^{2} + g\eta d\\ huv\\ huw\\ huw \end{bmatrix} \mathbf{G} = \begin{bmatrix} hv\\ huv\\ hu^{2} + \frac{1}{2}g\eta^{2} + g\eta d\\ huw\\ huw \end{bmatrix} \mathbf{H} = \begin{bmatrix} \omega\\ u\omega\\ v\omega\\ w\omega \end{bmatrix}$$

- Godunov-type scheme: HLL Riemann Solver with WENO reconstruction

- conservative & shock-absorbing
- pressure correction projection method (Poisson: hypre's BiCGStab + GMG)
- 2nd-order TVD Runge Kutta
- Domain Decomposition and MPI

Solution of the Poisson Equation

Poisson Eq. for the pressure correction

 $\Delta p = \nabla u$

Ax = f system of linear Equations

hypre: BiCGStab + PFMG

HPC: domain decomposition + MPI

NHFLOW - σ -grid

$$\sigma = \frac{z + h(x, y, t)}{d(x, y)}$$

NHFLOW - Wetting & Drying / Breaking Waves

wetting & drying:

- maintain minimum water level

$$wet_{ij} = 0 \quad if \quad \eta_{ij} < \eta_{neighbor}$$
$$wet_{ij} = 1 \quad if \quad \eta_{ij} > \eta_{neighbor}$$

breaking:

 no additional treatment due to shock-absorbing scheme

vertical scale: 5x contour: u-velocity

Benchmark: Stokes wave with kd = 6.28

	Discretization	Pressure	Mesh
SWASH	primitive variable / staggered	pressure correction	960 x 3
NHWAVE	Godonov-type / shock absorbing	projection method	1920 x 5
NHFLOW	Godonov-type / shock absorbing	pressure correction	1920 x 5

Beji & Battjes: Submerged Bar

Wave Input

- H = 0.021m
- T = 2.525s
- wave theory: 2ndorder Stokes

Setup

- mesh: 1400 x 2
- dx = 0.025 m
- CFL = 0.5

vertical scale: 50x contour: w-velocity

Beji & Battjes: Submerged Bar

t [s]

(d) gage 4

Beji & Battjes: Submerged Bar

Ting&Kirby: Breaking Waves

Wave Input

- H = 0.021m
- T = 2.525s
- wave theory: 5th-order cnoidal

Setup

- mesh: 640 x 5
- dx = 0.05 m
- CFL = 0.5

Ting&Kirby: Breaking Waves

19

Naissaar Harbor, Estonia

Wave Input

- Hs = 1.42 m
- T = 10.0 s
- wave theory: short-crested irregular waves

Setup

- mesh: 800 x 600 x 5
- 2.4 mil. cells

Naissaar Harbor, Estonia

Wave Input

- Hs = 1.42 m
- T = 10.0 s
- wave theory: short-crested irregular waves

Setup

- mesh: 800 x 600 x 5
- 2.4 mil. cells

Naissaar Harbor, Estonia

Pärnu - Outlook

Processes

- waves
- current
- sediment transport

Ericeira - Surf Wave Modeling

- Ericeira (Portugal): Unique location for surfing, one of the top spots in the world
- 9 different beaches
- EEA Grant

Objective

- predict wave conditions for the different beaches with REEF3D

- build a tool to predict surf waves
- partner: blueOasis, Ericeira Surf Clube

 $\Box NTNU$

E RICEIRA S U R F C L U B E

D NTNU

Ericeira - Surf Wave Modeling

Wave Input

- Hs = 4.0m
- T = 12.0 s
- wave theory: short-crested irregular waves

Setup

- 8.7 km x 9.1 km
- mesh: 1300 x 1377 x 5
- 8.95 mil. cells
- dx = 6.7 m

Bathymetry

- EMODNet (115m)
- LiDAR for coast (15m)

Ericeira: Praia de Ribeira d'Ilhas

Ericeira: Praia de Ribeira d'Ilhas

Wave Input

- Hs = 3.0m
- T = 10.0 s
- wave theory: short-crested irregular waves

Setup

- 2 km x 2 km
- mesh: 500 x 500 x 5
- 1.25 mil. cells
- dx = 4.0 m

Conclusions & Outlook

Conclusions

- new non-hydrostatic model REEF3D::NHFLOW
- very good dispersion (from deep to shallow)
- dynamic coastline: wetting & drying
- stable breaking wave behavior
- efficient: parallel and low number of cells needed
- accurate: HLL-Riemann with WENO reconstruction

Outlook

- more Validation
- Current
- Sediment
- Porous Media / VRANS
- Immersed structures
- Ship wave generator
- Hydrodynamic Coupling: NHFLOW to CFD

Acknowledgement

The authors thank the financial and technical support from the EEA project EMP480 - "Solutions to current and future problems on natural and constructed shorelines, eastern Baltic Sea".