

### (CRITICAL) RAW MATERIALS AND THEIR RECYCLING AS A KEY ENABLER FOR CLEAN ENERGY TECHNOLOGIES

Estonia and Saxony – on the way forward to Clean Energy. Research – Innovation – Realization

Prof. Dr.-Ing. Urs A. Peuker

Institut für Mechanische Verfahrenstechnik und Aufbereitungstechnik

#### **Clean Energy – Technology**



Bundesministerium für Bildung und Forschung



Wasserstoff Leitprojekte Grün. Groß. Global.



#### Clean Energy – Technology: Functional chemical elements = critical raw materials



#### **Criticality of raw materials**

The EU Green Deal Communication adopted on 11 December 2019 recognizes <u>access to resources</u> <u>as a strategic security question</u> to fulfil its ambition towards 2050 climate neutrality and increasing our climate ambition for 2030





# Availability of selected relevant critical raw materials for battery manufacturing (electrolysis technology PEM-EL / HT-EL)





#### 5 Prof. Dr.-Ing. Urs A. Peuker

# Availability of selected relevant critical raw materials for battery manufacturing (lithium-ion-batteries)





6 Prof. Dr.-Ing. Urs A. Peuker

#### **Geostrategic aspects of raw materials:**

restricted number of potential suppliers – location in political / economic unstable regions



7 Prof. Dr.-Ing. Urs A. Peuker

#### **Geostrategic aspects of raw materials:**

restricted number of potential suppliers – location in political / economic unstable regions



(Critical) Raw Materials and their Recycling as a Key Enabler for Clean Energy Technologies

8

#### **Recycling and Recovery of critical raw materials**

- Raw material are not ubiquitous
- Raw materials are an key factor for future technology development (and economic strength)
- Raw materials become a strategic aspect for future development
- The production (mining / processing refining) the of raw materials to introduce them into the materials cycle has a significant CO<sub>2</sub>-impact

### Keep the raw materials in the cycle!

• If there are no economic drivers – legislation can create drivers



### Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL concerning batteries and waste batteries, repealing Directive 2006/66/EC

| Measures                                                             | Option 2 - medium level of ambition                                                                                                                                                                                                            | Option 3 - high level of ambition                                                                                                                                                                                                              |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Recycling efficiencies and recovery of materials</li> </ol> | <ul> <li>Lithium-ion batteries and Co, Ni,<br/>Li, Cu:</li> <li>Recycling efficiency lithium-ion<br/>batteries: 65% by 2025</li> <li>Material recovery rates for<br/>Co, Ni, Li, Cu: resp. 90%, 90%,<br/><u>35%</u> and 90% in 2025</li> </ul> | <ul> <li>Lithium-ion batteries and Co, Ni,<br/>Li, Cu:</li> <li>Recycling efficiency lithium-ion<br/>batteries: 70% by 2030</li> <li>Material recovery rates for<br/>Co, Ni, Li, Cu: resp. 95%, 95%,<br/><u>70%</u> and 95% in 2030</li> </ul> |



### Green Deal: EU agrees new law on more sustainable and circular batteries to support EU's energy transition and competitive industry

..... This will guarantee that **valuable materials are recovered** at the end of their useful life and brought back in the economy by adopting stricter **targets for recycling efficiency and material recovery** over time. <u>Material recovery targets for lithium will be 50% by 2027 and 80% by 2031</u>.

11



#### **Challenges in recycling: Lithium-ion-batteries**





12 Prof. Dr.-Ing. Urs A. Peuker

#### **Batteries internal structure and setup**





13 Prof. Dr.-Ing. Urs A. Peuker

#### Crushing, sorting, re-crushing, sorting,... generation of secondary raw materials







14 Prof. Dr.-Ing. Urs A. Peuker

#### **Mechanical battery recycling process**







15 Prof. Dr.-Ing. Urs A. Peuker

#### **Effects of Selective comminution (foils only)**



HM 340 Gebr. Jehmlich





Wuschke 2016

16 Prof. Dr.-Ing. Urs A. Peuker

#### **Challenges in recycling: PEM-Electrolyzer stack**



SPONSORED BY THE





Prof. Dr.-Ing. Urs A. Peuker

17

#### **Mechanical recycling approaches**



reverse manufacturing



Decoating



SPONSORED BY THE

Federal Ministry

of Education

and Research

Leitprojekt

H<sub>2</sub>Giga

18 Prof. Dr.-Ing. Urs A. Peuker

**Selective** 

comminution



Feed: CCM Ø 5,6 mm Laboratory hammer mill on machine platform *Picoline* from *Hosokawa Alpine* 

Delaminated and ruptured CCM + electrode powder

Sample holder with CCM for analysis



19 Prof. Dr.-Ing. Urs A. Peuker

# **Conclusions - (Critical) Raw Materials and their Recycling as a Key Enabler for Clean Energy Technologies.**

Challenges are ahead:

- Criticality of related (raw) materials
- Supply and need differ for certain elements / materials
- Recycling has to keep the critical materials in the life-cycle.
- Are we able to keep the precious materials in the cycle?
  - Suitable technologies
  - Political and legislative boundary conditions
  - Industrial involvement
- Availability of skilled labor force?





### Activities to boost circular technology in Saxony and esp. in Freiberg

The work on the recycling challenges need concerted actions and the right infrastructure

Infrastructural activities:

- CircEcon pilot scale recycling and de-mounting plant (TU Dresden, TUBAF, TU Chemnitz; HS Zittau-Görlitz)
- FlexiPlant digitalized recycling plant (HZDR, TUBAF)
- Data Mining Lab Freiberg digitalized recycling and re-synthesis network (TUBAF, HZDR, FhG IKTS)

Education and integrated projects:

- Sächsische Wasserstoffunion (TU Chemnitz, TU Dresden, TUBAF)
- Participation in and lead of high level national projects
- Continuous development of teaching content
- Active participation in European activities, i.e. EIT RM, ERMA, Battery Alliance,...





**Data Mining Lab Freiberg** 



### **Challenges in recycling: Solid oxide cells – Designs and materials**

Leitprojekt Federal Minist of Education and Research

SPONSORED BY THE





#### **Sonomechanical-decoating – decoating efficiency**



SPONSORED BY THE





23 Prof. Dr.-Ing. Urs A. Peuker



#### Quantitative results – de-coating technology

Leitprojekt H<sub>2</sub>Giga



24 Prof. Dr.-Ing. Urs A. Peuker

(Critical) Raw Materials and their Recycling as a Key Enabler for Clean Energy Technologies

SPONSORED BY THE