Introducing contemporary research topics into school science programs Impact on students' motivation to become scientists

Weizmann Institute of Science, Israel

The Chemistry Group

הוראת המדעים SCIENCE TEACHING

What did you learn in chemistry lessons in school?

FUTURE

PRESE

 $\pi \cup \subset \parallel$ UH Q 2. M $2H_20 + 2e^- = M_2 + 20M_1$ VO2)NO3+ 5NO2 + 3H2O; $H_{3}CO + 2e - H_{2} + 20H)$ OH H20 4 H20 Cu; $= H_{20} + 20H - Sn(0H)_{2}$ H3CO OH Fe-2e⁻+Fe²⁺ 2H20 80 V(SOy) = 2H; Unp = Vosp In/In*//P 0000 $A: H_2 - 2e + H + k: PB^{2+} + 2e = PB;$ $2e^{-} = H_{2} + 20H^{-} NH_{2}$ NH 1 02+2H20+4e - 40H; H V+Br2=VBr3; N NH, CH CH. 60-2H20+02+2H20+4e= 40H; -CH 50+ C- $(V0_2)N0_3 + 5N0_2 + 3H_20_3$ 3 N OH2 OH3 $V + Br_2 = V Br_3; En / Zn^{2+}/P$ 02 +2H20+4e= 40H; NOM3 H3CO. a 0,6 V_{r} $HNO_{3} = VO_{2} NO_{3} + NO_{2} + H_{2}O_{3}$ 0,4 0,2 HH,+20H СH 02+2H,0 Unp= Dos CH_3 NH2 $(V0_2)N0_3 + 5N0_2 + 3H_20_3$ N0H³ 2H20+ $2H_2O$ 0H202 OH3 02 +2H20+4e Sn+02+2H20 CH2 Fe -00 CH_3 OLH $2H_20 + 2e = H_21 + 20H^{-1}$ $Sn^2 + 20H^{-1} = Sn(0H)_2$ NH3 $2e^{-}+Fe^{2+}$ N HN CH 3 $\Delta G = \Delta H_3 H_2 SO_4 = V(SO_4)_2 + 2H; CH_3$ Cu $Sn^{2+}+2e^{-}=Sn$ N'OH3 -Tas Sn+02 + 2H2 $Sn^{2+}+2e^{-}=Sn$ NH_2 $CH_3COONa+H_2O$ K (_) N CL/NatNa3 + $P\beta^{2r} = Zn^{2+} + P\beta;$ 0 $V_r: H_{2^+} J_2 = 2 H J$ $CH_3 PO_4^3 - 1,16 HPO_3^2 - 1,50 O_2 + 2H_2 O + 4e$ Zn $\mathcal{H}_{3}(VF_{6})$ H^+Sn^+ $H_2 PO_2^{-205} P_4^{-0,19} Sn + O_2 + 2H_2 + 4e = 40 H + Sn^+$ $V + J_2 = V J_2$ 40 $V_6: 2HJ = H_2 + J_2$ $Na_2 SO_4 \Longrightarrow 2 Na^+ + SO_4^{2-}$ N NH3 CH3 $-T_{\Delta}S = 41, 2 - (298 + 42 \cdot 10^{-3})$ = Vosp \mathcal{L} V + 6 HNO, V + 6 HNO, H CH₃ $Sn^2 + 2e^- = Sn$ 3 H2 SO4

Chemistry is continually being developed through research

- Organic chemistry
- Solid state
- Bio-chemistry, biomaterials
- Colloids and nanochemistry
- Medicinal chemistry
- Catalysis
- Analytical chemistry
- Sustainability, global challenges
- Computational chemistry

Why should we bridge this gap?

(Blonder & Dinur, 2011; Hutchinson, Bodner, and Bryan, 2011; Blonder & Sakhnini, 2012; Delgado, Stevens, Shin, and Krajcik, 2015)

How can we bridge this gap?

Blonder, Rap, & Benny, (2020). Research visits as nuclei for school programs. In Parchmann, Simon, & Apotheker (Eds.). Engaging Learners with Chemistry: projects to stimulate interest and participation (pp. 135-153). Royal Chemistry Society. Stamer, David, Höffler, Schwarzer, & Parchmann. (2021) Authentic insights into science: scientific videos used in out-ofschool learning environments. International Journal of Science Education 43:6, pages 868-887. Blonder, R., & Sakhnini, S. (2015). The making of nanotechnology: exposing high-school students to behind-the-scenes of nanotechnology by inviting them to a nanotechnology conference. Nanotechnology Reviews, 4(1), 103-116.

Participate in a scientific conference

Blonder, R., & Sakhnini, S. (2015). The making of nanotechnology: exposing high-school students to behind-thescenes of nanotechnology by inviting them to a nanotechnology conference. Nanotechnology Reviews, 4(1), 103-116. https://doi.org/DOI: 10.1515/ntrev-2014-0016

Outreach activities: The example of the Scanning Electron Microscope (SEM)

- A method for characterization for scientific research (Smith & Oatley, 1955)
- SEM has the ability to reach a nanoscale (10⁻ ⁹m) resolution - Imaging
- EDS abilities Element identification
- Characterization methods (such as a SEM) is a fertile concept to discuss contemporary nanoscale science and hold a discussion with scientists

Phenom ProX Desktop SEM

- The high-performance desktop SEM
- Magnification range up to 150,000x
- Fully integrated EDS solution
- Optional SED

The influence of the SEM activity: Perceived authenticity

Joining a research lab \rightarrow Job Shadow

SciCar

Addressing Attractivness of **Sci**ence **Car**eer Awareness

רירוז וישרא דרידוז

UNIVERSITY OF HELSINKI FACULTY OF EDUCATIONAL SCIENCES

Blonder, R., Rap, S. & Benny, N. (2020). Research visits as nuclei for school programs. In I., Parchmann, S. Simon, & J. Apotheker (Eds.). *Engaging Learners with Chemistry: projects to stimulate interest and participation* (pp. 135-153). Royal Chemistry Society. doi: 10.1039/9781788016087

Job Shadow @ Weizmann

European Commission

ΠUN UH Q M $2H_2O + 2e^- = H_2 + 2OH_1$ 10,+ 5NO2+ 3H20; $H_{3}CO + 2e - H_{2} + 20H)$ OH Cu; H_2O CL H2O = H20 +20H - Sn (OH), H3CO OH $Fe - 2e^{-} + Fe^{2+} K$ 2H20 80 V(SOy) + 2H; Unp = Dosp In/In*//P $A:H_{2}-2e+H+k:Pb^{2+}+2e=Pb;$ 2e= H2+20H NH2 NH 1 02+2H20+4e - 40H; H NH, $V + Br_2 = V Br_3; N$ CH. 60- $: 2H_2O + O_2 + 2H_2O + 4e = 40H_5$ CH 50 $(V0_2) N0_3 + 5 N0_2 + 3 H_2 0_3$ K (_) OH3 () OH2 $V + Br_2 = V Br_3; In / In / P$ ³⁴ Can formal education bridge the gap? 0.2 ,+20H СН CH_3 2H20+ 0H202 OH3 CH2 02+2H20+4e Sn+02+2H20 00 CH3 0 OLH $2H_20 + 2e = H_21 + 20H^ Sn^2 + 20H^- = Sn(0H)_2$ NH3 HN CH3 $\Delta G = \Delta H \quad 3 H_2 SO_4 = V (SO_4)_2 + 2H; CH_3$ $Sn^{2+}+2e^{-}=Sn$ N'OH3 -Tas Sn+02 + 2H2 $Sn^{2+}+2e^{-}=Sn$ K (_) NH2 CH3COONa+H2O N Cl/NatNa3 + $Pg^{2r} = Zn^{2+} + PB;$ 0 $V_{r}: H_{2} + J_{2} = 2 H J$ $CH_3 PO_4^3 - 1,16 HPO_3^2 - 1,50 O_2 + 2H_2O + 4e$ Zn $\mathcal{H}_{3}(VF_{6})$ $V + J_2 = V J_2$; $H_2 P O_2 - 205 P_4 - 0.19$ $Sn + O_2 + 2H_2 + 4e = 40 H + Sn^+$ $H^+ Sn^+$ 40 $V_6: 2HJ = H_2 + J_2$ $Na_2 SO_4 \Longrightarrow 2Na^+ + SO_2^{2-}$ CH 3 $-T_{\Delta}S = 41, 2 - (298 + 42 \cdot 10^{-3})$ = Vosp \mathcal{I} V + 6 HNO, V + 6 HNO, H CH₃ $Sn^2 + 2e^- = Sn$ 3 H2 SO4

The Blonder's Research Group

The McKinsey report: Barber, M., & Mourshed, M. (2007). *How the world's best-performing school systems come out on top.*

- 1. The quality of an education system cannot exceed the quality of its teachers
- 2. The only way to improve outcomes is by improving instruction

Teachers have a central role

Teachers' knowledge is complex

ContentPCKPedagogicalKnowledgeKnowledge

Pedagogical Content Knowledge

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.

Courses for teachers: Updating their Content Knowledge (CK)

The Story of Nanomaterials in Modern Technology: An Advanced Course for Chemistry Teachers

Ron Blonder

Department of Science Teaching, Weizmann Institute of Science, Rehovot, 76100 Israel; ron.blonder@weizmann.ac.il

Blonder, R. (2011). The story of nanomaterials in modern technology: An advanced course for chemistry teachers. *Journal of Chemical Education, 88*, 49-52. https://doi.org/10.1021/ed100614f

Teachers improved their CK of contemporary science (nanotechnology)

Blonder, R. (2011). The story of nanomaterials in modern technology: An advanced course for chemistry teachers. *Journal of Chemical Education, 88*, 49-52. https://doi.org/10.1021/ed100614f

Feldman-Maggor, Y., Tuvi-Arad, I., & Blonder, R. (2022). Development and Evaluation of an Online Course on Nanotechnology for the Professional Development of Chemistry Teachers. *International Journal of Science Education*

Teachers improved their CK of contemporary science (Electron Microscopy)

Yonai & Blonder (submitted). A Scanning Electron Microscope (SEM) course for teachers: Exploring teachers' roles in an authentic science environment. *Journal of Science Teacher Education.*

CK is not enough...

Pedagogical Content Knowledge

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.

Teachers need to develop PCK to bring contemporary chemistry to class

Planinšič, G., & Kovač, P. (2008). Nano goes to school: A teaching model of the atomic force microscope. *Physics Education, 43, 37-45.*

Blonder, R. (2010). The influence of a teaching model in nanotechnology on chemistry teachers' knowledge and their teaching attitudes. *Journal of Nano Education, 2, 67-75.*

A three-stage model for development of teachers' contemporary knowledge

- 1) Contemporary contents
- 2) Tutorial that emphasizes pedagogy
- 3) Adaptation to education

Mamlok-Naaman, R., Blonder, R., & Hofstein, A. (2010). Providing chemistry teachers with opportunities to enhance their knowledge in contemporary scientific areas: A three-stage model. *Chemistry Education Research and Practice*, *11*, *241-252*.

Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK: results of the thinking from the PCK summit. In A. Berry, P. J. Friedrichsen, & J. J. Loughran (Eds.), *Re-examining pedagogical content knowledge in science education (pp. 28–42). Routledge.*

The Importance of and the need for personalization learning for teachers

Blodner, R., & Vescio, V. (2022). Professional Learning Communities across science teachers' careers: The importance of differentiating learning. In J. A. Luft & M. G. Jones (Eds.), *Handbook of Research on Science Teacher Education* (pp. 300-312). Taylor & Francis Books. How can we practically personalize teachers learning? They differ in many aspects...

Research Practice Partnership

The teachers -

- Designed nanotechnology unit for their own students
- Implement the unit and
- Measured its influence on their students
- Wrote a report about the process

After 5 years -

- The change was sustainable
- Verity of teaching approaches transferred to their teaching of

chemistry.

Blonder, R., & Mamlok-Naaman, R. (2016). Learning about teaching the extracurricular topic of nanotechnology as a vehicle for achieving a sustainable change in science education. *International Journal of Science and Mathematics Education*, 1-28. https://doi.org/10.1007/s10763-014-9579-0

Impact of teachers' knowledge & beliefs

Bridging the gap

The Chemistry Group, Weizmann Institute of Science

הוראת המדעים SCIENCE TEACHING

Ron.Blonder@Weizmann.ac.il