Drivers of algal blooms in the polar areas

The changing Arctic

Norway – Estonia webinar 14.4.2021

Hanna Kauko, Norwegian Polar Institute

+ partner organizations

PI of the Arctic projects (biology): Philipp Assmy

The Research Council of Norway

PI of the Southern Ocean project (phytoplankton part): Sebastien Moreau

Introduction

Algae: «plants» of the aquatic environments Phytoplankton and ice algae: microscopic algae in the water column and sea ice

Why are we interested in algae?

- Marine food webs rely on algae
- Relevance of photosynthesis in the carbon cycle
- -> understanding the ecosystem, also relevance for spatial planning of ecosystem management

NB: Algae need sunlight and nutrients for photosynthesis (= environmental drivers)

With the environmental changes in the polar areas, questions arise:

How do the algae in ice-covered waters respond to the increased light availability? Are growth or community composition affected by the increased light availability?

Are the algae able to protect themselves from excess light?

Introduction

The Arctic main project

NOR WEGIAN YOUNG SEA ICE CRUISE

- 6-month long drift expedition in the pack ice region north of Svalbard (80–83.5 °N)
- Atmosphere, ice, ocean, ecosystem

Greenland Lance track - Floe 1 - Floe 2 - Floe 3 - Floe 4

@OceanSealceNPI

R/V Lance

Transmittance

<0.3 %

Up to 40 %

Photo: Vasily Kustov and Sergey Semenov (Arctic and Antarctic Research Institute, St. Petersburg, Russia)

Kauko et al. 2017 JGR-B

1. In the thin sea ice, photoprotective carotenoids and MAAs increase in Spring

2. Species succession towards ice specialists

- Pennate diatoms dominated at the end of sampling in high irradiance conditions (up to 350 μmol photons m⁻² s⁻¹)
- Old ice functions as a seed repository (see also Olsen et al. 2017)
- Implications of loss of older ice?

Kauko et al. 2018 Front Mar Sci

Algal bloom also in the water column below the ice

CJ Mundy

Southern Ocean Ecosystem cruise 2019 NPI + partners

The second second

Phytoplankton bloom phenology (*when*) in the Southern Ocean

Especially along the coast the blooms start within 3 weeks from sea ice retreat

-> sea ice, via e.g. light limitation, is concluded to control bloom initiation in those areas

Implications of a shorter sea ice period?

For bloom end, light is not the problem At least not alone

Mixed layer depth (MLD) is shallower than euphotic depth (ZEu)

Kauko et al. 2021 Front Mar Sci

Summary: light as a polar algal bloom driver

- Ice algal community succession in the young ice led to typical pennate by the on
- on invector of algal responses to light availability is the high Knowledge on algal responses to light availability is valuable in the times of rapid environmental change • A phytopl, that affects the light conditions in the polar areas because ice despite
 - woom could grow beneath thick snow and ice cover
 - In Kong Håkon VII Hav (SO), light availability may limit the bloom start but not the end

THANK YOU FOR YOUR ATTENTION

hanna.kauko@npolar.no